石門水庫上游集水區阿姆坪至枕頭山間行人、機車通行橋樑新建工程
水土保持計畫

水土保持義務人： 經濟部水利署北區水資源局
承辦技師： 鄭寶成水土保持水利技師
執業機構： 亞柏技術顧問股份有限公司
電話： (02)8921-5333
中華民國九十四年五月二十四日
(一) 水土保持計畫名稱：石門水庫上游集水區阿姆坪至枕頭山間行人、機
車通行橋樑新建工程水土保持計畫

(二) 水土保持義務人：經濟部水利署北區水資源局
統一編號：44502641
通訊地址：桃園縣龍潭鄉佳安村佳安路 2 號
電 話：(03)471-2001
傳 真：(03)471-2981
代 表 人：賴伯勤
住址：台中市南區國光里仁和路 213 巷 9 之 4 號
身份證統一編號：R102394760
電 話：(03)471-2291
傳 真：(03)471-2981

(三) 承辦技師：鄭寶成
執業機構：亞柏技術顧問股份有限公司
地址：台北縣永和市中和路 345 號 6 樓之 3
電話：(02)8921-5333
傳真：(02)8921-5334
技師證書字號：台工登字第 11192 號
技師執業執照字號：技執字第 005315 號
技師執業圖記及簽名：

當地省（市）技師公會會員證字號：台灣省水土保持技師公會
省水保技字第 016 號

(四) 編製日期：中華民國九十四年五月二十四日
技師執業執照
技執字第○○五三一五號
技師 廖寶成 申請執業執照
相符合行發給執業執照

一、姓名：廖寶成 身分證統一編號：A120895917 性別：男
住所：台北縣永和市民生路四十六巷二十號十四樓
二、出生年月日：民國伍拾貳年伍月參拾壹日
三、執業方式：技師法第六條第一項第二款
四、執業機構名稱：亞柏技術顧問股份有限公司
所在地：台北縣永和市中和路三四五號六樓之一
五、技師別證書字號：水土保持科 台工登字第一一一一九二號
水利工程科 經（八四）水登字第○六九五號

六、業務範圍：（如背面）
七、執照有效期間：自民國九十三年一月二十日至九十七年一月二十日止

行政院公共工程委員會
主席 委員

郭瑶琪
中華民國 九十三年 八月
臺灣省水土保持技師公會

會員證書

根據 鄔寶成 技師申請加入 本會為會員，經審查與公會章程第六條相符，准予入會，特給此證。

技師姓名 鄔寶成
出生年月日 52.05.31
台工登字 11192

執業執照字 律執 字第 005315 號

執業機構名稱 亞柏技術顧問股份有限公司
執業機構所在地 台北縣永和市中和路 345 號 6 樓之 3

創業日期 民國 94 年 01 月 08 日

理事長 洪祈存

籍編號：省水保技字第 016 號
水土保持計畫檢核表
水土保持計畫檢核表

<table>
<thead>
<tr>
<th>水土保持計畫名稱</th>
<th>石門水庫上游集水區阿姆坪至枕頭山間行人、機車通行橋樑新建工程水土保持計畫</th>
</tr>
</thead>
<tbody>
<tr>
<td>水土保持義務人姓名或名稱</td>
<td>經濟部水利署北區水資源局 代表人：賴伯勤</td>
</tr>
<tr>
<td>身分證或營業事業統一編號</td>
<td>44502641 身份證號：R102394760</td>
</tr>
<tr>
<td>住居所或營業所</td>
<td>桃園縣龍潭鄉佳安村佳安路2號</td>
</tr>
<tr>
<td>實施地點</td>
<td>桃園縣大溪鎮三層段阿姆坪小段47-7、47-2、47-3、91、91-5、19、20、21、22、23、24地號等十一筆土地</td>
</tr>
<tr>
<td>土地標示</td>
<td>申請開發面積 申請土地使用面積：13,981.73 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>審查項目</th>
<th>是</th>
<th>否</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.應檢附文件</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)目的事業開發或利用許可申請文件一份</td>
<td>□</td>
<td></td>
<td>依主管機關要求份數</td>
</tr>
<tr>
<td>(2)水土保持計畫一份</td>
<td>□</td>
<td>□</td>
<td>本案無關區域計畫相關法令規定，故免提交水土保持規劃書。</td>
</tr>
<tr>
<td>(3)水土保持規劃書一份</td>
<td>□</td>
<td>□</td>
<td>本案將依法提交環境影響評估。</td>
</tr>
<tr>
<td>(4)環境影響說明書或環境影響評估報告書及審查結論</td>
<td>□</td>
<td>□</td>
<td>本案無關區域計畫相關法令規定，故免提交水土保持規劃書。</td>
</tr>
<tr>
<td>(5)水土保持規劃書審定本。</td>
<td>□</td>
<td>□</td>
<td>本案無關區域計畫相關法令規定，故免提交水土保持規劃書。</td>
</tr>
<tr>
<td>2.申請開發基地內土地有否違規？</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>(1)申請開發區內之土地，經直轄市、縣（市）主管機關裁處暫停開發申請之期限，是否已屆滿者？</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)申請開發區內之土地，經直轄市、縣（市）主管機關依水土保持法或山坡地保育利用條例規定處罰，並經继续限期改正者是否已改正完成或實施已符合水土保持技術規範？</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.申請開發區有否座落於「特定水土保持區」？</td>
<td>□</td>
<td>□</td>
<td>非座落於「特定水土保持區」</td>
</tr>
<tr>
<td>(1)是否依關水資源之重大建設？</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)是否不涉及一定規模以上之地貌改變及經環境影響評估審查通過之自然遊憩區，且經中央主管機關核定者？</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)是否屬水土保持法第十九條第二項規定禁止任何開發行為者？</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 水土保持計畫範圍與開發目的事業計畫範圍是否相符？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 是否屬水土保持法施行細則第四條規定，中央主管機關指定規模以上之種類及規模？</td>
<td>□ □ 勾選</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 是否依規定由承辧技師簽證？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) 承辧技師資格是否符合？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) 承辧技師資料是否齊全？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 有否檢附技師證書影件？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>② 有否檢附參加當地省(市)技師公會會員證書影件？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③ 有否檢附執業執照影件？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) 協辧技師是否簽證？</td>
<td>□ □ 依「水土保持法」第六條之一辦理</td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 協辧技師資格是否符合？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>② 有否檢附技師證書影件？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③ 有否檢附參加當地省(市)技師公會會員證書影件？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>④ 有否檢附執業執照影件？</td>
<td>□ □</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備註欄

水土保持義務人：經濟部水利署北區水資源局
承辧技師：鄭寶成
報告本文
石門水庫上游集水區阿姆坪至枕頭山間
行人、機車通行橋樑新建工程
水土保持計畫

目 錄

<table>
<thead>
<tr>
<th>章節</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>目 錄</td>
<td>i</td>
</tr>
<tr>
<td>表目錄</td>
<td>iii</td>
</tr>
<tr>
<td>圖目錄</td>
<td>iv</td>
</tr>
<tr>
<td>第一章</td>
<td>計畫目的</td>
</tr>
<tr>
<td>第二章</td>
<td>計畫範圍</td>
</tr>
<tr>
<td>第三章</td>
<td>道路設計規範標準</td>
</tr>
<tr>
<td>第四章</td>
<td>基本資料</td>
</tr>
<tr>
<td>4-1 水文</td>
<td>4-1</td>
</tr>
<tr>
<td>4-2 計畫路線地形</td>
<td>4-6</td>
</tr>
<tr>
<td>4-3 計畫路線地質</td>
<td>4-11</td>
</tr>
<tr>
<td>第五章</td>
<td>道路修築</td>
</tr>
<tr>
<td>5-1 道路平面及斷面</td>
<td>5-1</td>
</tr>
<tr>
<td>5-2 計算挖、填士方量</td>
<td>5-1</td>
</tr>
<tr>
<td>5-3 豔餘土方之處理方法、地點、安全施設及表土處理</td>
<td>5-2</td>
</tr>
<tr>
<td>第六章</td>
<td>水土保持設施</td>
</tr>
<tr>
<td>6-1 排水設施</td>
<td>6-3</td>
</tr>
<tr>
<td>6-2 滯洪及沉砂設施</td>
<td>6-8</td>
</tr>
<tr>
<td>6-3 邊坡穩定設施</td>
<td>6-8</td>
</tr>
<tr>
<td>6-4 植生工程</td>
<td>6-13</td>
</tr>
<tr>
<td>第七章</td>
<td>道路修築期間之防災措施</td>
</tr>
</tbody>
</table>
7-1 分區施工前之臨時排水及攔砂設施 7-1
7-2 施工便道 7-3
7-3 剛允土方處理方法及地點 7-3
7-4 防災設施 7-6

第八章 預定施工方式 8-1
8-1 預定施工作業流程 8-1
8-2 預定施工期限 8-4

第九章 水土保持計畫設施項目、數量及總工程造價 9-1

附錄一 地籍資料
附錄二 邊坡穩定分析成果
<table>
<thead>
<tr>
<th>表</th>
<th>目 錄</th>
</tr>
</thead>
<tbody>
<tr>
<td>表 2-1</td>
<td>土地清冊</td>
</tr>
<tr>
<td>表 4-1</td>
<td>降雨強度分析表</td>
</tr>
<tr>
<td>表 4-2</td>
<td>退流係數 C 值之選擇參考表(農委會)</td>
</tr>
<tr>
<td>表 4-3</td>
<td>簡化地層及建議參數表</td>
</tr>
<tr>
<td>表 5-1</td>
<td>挖填土方計算表</td>
</tr>
<tr>
<td>表 6-1</td>
<td>水土保持設施數量表</td>
</tr>
<tr>
<td>表 6-2</td>
<td>排水分區流量表</td>
</tr>
<tr>
<td>表 6-3</td>
<td>排水系統退流量水理計算表</td>
</tr>
<tr>
<td>表 6-4</td>
<td>邊坡穩定分析與規範要求安全係數一覽表</td>
</tr>
<tr>
<td>表 8-1</td>
<td>施工計畫表</td>
</tr>
<tr>
<td>表 8-2</td>
<td>預定施工進度表</td>
</tr>
<tr>
<td>表 9-1</td>
<td>水土保持計畫施工經費估算總表</td>
</tr>
</tbody>
</table>
目 錄

圖 1-1 計畫區位圖 ... 1-3
圖 2-1 基地地籍圖 ... 2-3
圖 4-1 環境水利圖 ... 4-4
圖 4-2 基地地理位置圖 ... 4-7
圖 4-3-1 現況地形圖(一) ... 4-9
圖 4-3-2 現況地形圖(二) ... 4-10
圖 4-4 區域地質圖 ... 4-12
圖 4-5 鑽孔位及地層剖面圖 ... 4-20
圖 5-1-1 橋樑北側平面圖 ... 5-4
圖 5-1-2 橋樑中段平面圖 ... 5-5
圖 5-1-3 橋樑南側平面圖 ... 5-6
圖 5-1-4 南側引道平面圖 ... 5-7
圖 5-2 橋樑立面圖 ... 5-8
圖 5-3 南側引道立面圖 ... 5-9
圖 5-4 整地前後等高線地形對照圖 ... 5-10
圖 5-5 挖填土石方區位圖 ... 5-11
圖 6-1 水土保持設施圖 ... 6-2
圖 6-2 排水設施配置圖 ... 6-6
圖 6-3 排水設施詳圖 ... 6-7
圖 6-4-1 邊坡穩定分析圖(平時) ... 6-10
圖 6-4-1 邊坡穩定分析圖(地震) ... 6-11
圖 6-4-1 邊坡穩定分析圖(暴雨) ... 6-12
圖 6-5 植生工程配置圖 ... 6-14
圖 6-6 植生工法詳圖 ... 6-15
圖 7-1 臨時防災配置圖 ... 7-2
圖 7-2 既有道路位置圖 ..7-4
圖 7-3 施工便道配置圖 ..7-5
圖 7-4 臨時防災設施圖 ..7-7
圖 8-1 預定施工作業流程圖 ...8-2
第一章 計畫目的

石門水庫上游大溪鎮復興里 11 鄰至 17 鄰位處枕頭山，目前所居住之二十餘戶住家，於水庫豐水期，靠舢舨作為阿姆坪與枕頭山兩地間交通工具。當水庫水位低於 215 公尺以下時，無法藉由船筏進出通行。經濟部水利署北區水資源局雖多次協助於三民溪裸露河床設施臨時便道，以利當地居民進出及日常生活補給，然水位回升後，施設之便道即被水流沖蝕，影響居民生活及交通至鉅。案經該里里長代表居民陳情，建請設置永久通行道路或架設橋樑，以免除當地居民經年生活及交通之不便。緣此，經濟部水利署北區水資源局評估於阿姆坪與枕頭山間設置供機車及行人通行橋樑一座，以解決當地居民長年通行不便，預定橋樑完成位置詳見圖 1-1。

本案屬水庫上游集水區內之橋樑工程，為配合生態保育、兼顧觀光及景觀等理念，並考量豐水期及枯水期特殊狀況，規畫採用高跨度、低污染、施工工期較短，並能與兩岸原有道路相連接及當地自然景觀相結合之造型橋樑，以降低對水源水質水量保護區之衝擊。

本基地部分現況為石門水庫上游集水區，其用地為非都市土地之山坡地範圍，依水土保持法規定，需訂定水土保持計畫。本計畫乃遵行行政院農業委員會 93 年 8 月發布之「水土保持計畫審核監督辦法」規定之水土保持計畫內容(國道、省(直轄市)、縣、鄉道外之其他道路適用)內容辦理編撰「水土保持計畫」，及 92 年 8 月公告修正之「水土保持技術規範」規劃設計有關水土保持設施。
本水土保持計畫主要針對基地開發前、開發中暨開發後，並配合水土保持計畫之開工與完工勘驗等程序，進行相關水土保持設計。有關本基地於開發後應辦理之水土保持設施詳見本水土保持計畫第六章所述；於開發中應辦理設施詳見本計畫第七章所述。期使各項設施皆能符合規定，使本基地水土保持之處理與維護能配合環境發展計畫，促進山坡地保育利用及維護公共安全。
圖 1-1 計畫區位圖
第二章 計畫範圍

本開發計畫位於桃園縣石門水庫之上游集水區內，阿姆坪與枕頭山兩地間興建橋樑一座，平常供行人及機車通行之用，緊急必要時可供消防車或救護車通過，橋樑预定長度約三六○公尺，橋寬為五公尺。另為銜接南端枕頭山既有道路，本計畫設置一條五米寬之高架引道，連接南側橋台及既有道路，長度約160.72公尺。有關本基地之土地基本資料詳見表2-1所述，地籍圖詳見圖2-1所示，地籍資料詳見附錄一。

申請土地座落：桃園縣大溪鎮阿姆坪地區

申請土地總本面積：365,788 m²

申請土地使用面積：13,981.73 m²

申請土地用途：橋樑新建工程
表 2-1 土地清冊

<table>
<thead>
<tr>
<th>編號</th>
<th>區別</th>
<th>段</th>
<th>小段</th>
<th>地號</th>
<th>地目</th>
<th>膽本書面積 m²</th>
<th>使用面積 m²</th>
<th>土地管理者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>47-7</td>
<td>水</td>
<td>1,402</td>
<td>222.31</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>2</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>47-2</td>
<td>林</td>
<td>192,220</td>
<td>562.64</td>
<td>桃園縣大溪鎮公所</td>
</tr>
<tr>
<td>3</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>47-3</td>
<td>水</td>
<td>33,359</td>
<td>2,473.53</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>4</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>91</td>
<td>林</td>
<td>47,310</td>
<td>223.00</td>
<td>行政院農業委員會林務局</td>
</tr>
<tr>
<td>5</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>91-5</td>
<td>水</td>
<td>63,149</td>
<td>1,420.54</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>6</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>19</td>
<td>水</td>
<td>9,542</td>
<td>583.21</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>7</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>20</td>
<td>水</td>
<td>2,531</td>
<td>1,862.38</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>8</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>21</td>
<td>水</td>
<td>6,445</td>
<td>849.25</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>9</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>22</td>
<td>水</td>
<td>2,604</td>
<td>1,009.04</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>10</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>23</td>
<td>水</td>
<td>6,018</td>
<td>957.87</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>11</td>
<td>大溪鎮</td>
<td>三層</td>
<td>阿姆坪</td>
<td>24</td>
<td>水</td>
<td>1,208</td>
<td>579.42</td>
<td>統一都水利局北區水資源局</td>
</tr>
<tr>
<td>12</td>
<td>未登冊地</td>
<td></td>
<td></td>
<td>9025-16</td>
<td>-</td>
<td>-</td>
<td>1,430.94</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>未登冊地</td>
<td></td>
<td></td>
<td>9037-37</td>
<td>-</td>
<td>-</td>
<td>117.44</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>未登冊地</td>
<td></td>
<td></td>
<td>9037-40</td>
<td>-</td>
<td>-</td>
<td>255.96</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>未登冊地</td>
<td></td>
<td></td>
<td>9037-49</td>
<td>-</td>
<td>-</td>
<td>138.85</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>未登冊地</td>
<td></td>
<td></td>
<td>9037-51</td>
<td>-</td>
<td>-</td>
<td>1,216.51</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>未登冊地</td>
<td></td>
<td></td>
<td>9037-53</td>
<td>-</td>
<td>-</td>
<td>78.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>共壹拾柒筆地號</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>365,788</td>
<td>13,981.73</td>
<td></td>
</tr>
</tbody>
</table>

第二章 計畫範圍 2-2
第三章 道路設計規範標準

本開發計畫主要於桃園縣石門水庫上游集水區內，興建橋樑一座連絡阿姆坪與枕頭山兩地間，及高架引道銜接既有道路，平常供行人及機車通行之用，緊急必要時可供消防車或救護車通過。本橋樑及高架引道結構型式及規範依據詳以下所述。

一、結構概述

本橋樑位於石門水庫上游集水區阿姆坪至枕頭山間，跨越大漢溪，總長度360m。橋樑型式為對稱型四跨雙拱提藍式鋼拱橋，分別為四跨連續，跨度為60m+120m+120m+60m。橋面寬皆為5.0m，橋面則為鋼橋面板。縱向線型為兩端各30m為坡度1/30之直線，中央300m為較兩端高程高1m之直線，樑底最高點距水面約20.0m。橋拱高25.35m，基礎則為RC基座，拱型為對稱拋物線型式略向橋中心線傾斜。橋墩高度自基礎至支承高度18m~26m不等。

引道自橋台A2側平台外緣起至枕頭山現有道路止，主線長160.72公尺，除了11號樁處之9m×9m迴車平台外，引道面為寬度5m、厚度25cm之RC版。其結構為60cm×80cmRC主樑、大約每10m兩側有40cm×60cmRC懸臂樑及下方φ150cm柱及延伸之基樑支撐。

二、設計規範

1.交通部"公路橋樑設計規範"，民國90年。

2.交通部"公路橋樑耐震設計規範"，民國84年。
3.89年4月7日”交技89字第3577號函修正「公路橋樑耐震設計規範」”相關規定。

4.日本道路協會”道路橋耐風設計便覽”，平成3年7月。
第四章 基本資料

4-1 水文

一、降雨頻率與降雨強度分析

申請基地之排水設施，依工程性質選擇適當頻率年（25或50年）及雨量資料，以求得其降雨強度，並依據行政院農業委員會所頒「水土保持技術規範」第十六條無因次降雨強度公式，選用鄰近申請基地之雨量站石門(2)測站，進行25年及50年降雨頻率之推估，詳述如下：

\[
\frac{I^T_t}{I^25_{60}} = (G + H \log T) \cdot \frac{A}{(t + B)^c} \\
I^T_t = (G + H \log T) \cdot \frac{A}{(t + B)^c} \times I^25_{60} \\
I^25_{60} = \left(\frac{P}{25.29 + 0.094P}\right)^2 \\
A = \left(\frac{P}{-189.96 + 0.31P}\right)^2 \\
B = 55 \\
C = \left(\frac{P}{-381.7 + 1.45P}\right)^2 \\
G = \left(\frac{P}{42.89 + 1.33P}\right)^2 \\
H = \left(\frac{P}{-65.33 + 1.836P}\right)^2
\]

式中：\(T\)：重現期距(年)

\(t\)：降雨延時或集流時間(分)

\(I^T_t\)：重現期距T年，降雨延時t分鐘之降雨強度（公釐/小時）
J_{60}^{25}：重現期距25年，降雨延時60分鐘之降雨強度（公釐/小時）

P：年平均降雨量（公釐）

A、B、C、G、H：係數

式中各值經整理如下：

表 4-1 降雨強度分析表

<table>
<thead>
<tr>
<th>項目站</th>
<th>重現期距(年)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>G</th>
<th>H</th>
<th>J_{60}^{25}</th>
<th>P(mm)</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>石門(2)</td>
<td>25</td>
<td>18.07774</td>
<td>55</td>
<td>0.59200</td>
<td>0.55123</td>
<td>0.30515</td>
<td>92.52848</td>
<td>2539.4</td>
<td>1635.59421</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>18.07774</td>
<td>55</td>
<td>0.59200</td>
<td>0.55123</td>
<td>0.30515</td>
<td>92.52848</td>
<td>2539.4</td>
<td>1789.24718</td>
</tr>
</tbody>
</table>

石門(2) 項目站 降雨強度:

\[
J_{t}^{25} = \frac{1635.59421}{(t+55)^{0.59200}}
\]

\[
J_{t}^{50} = \frac{165.97546}{(t+55)^{0.59200}}
\]

二、開發前、中、後之退流係數估測

退流係數為退流量與降雨量之比值，依據行政院農業委員會所頒定「水土保持技術規範」第十八條對退流係數 C 值之規定（詳見下表），取大值為代表，因本基地開發前為綠地使用之山坡地，其退流係數 C＝0.75；開發中退流係數 C＝1.00，開發後退流係數 C＝0.95。
表 4-2　遶流係數 C 值之選擇參考表（農委會）

<table>
<thead>
<tr>
<th>集水區状况</th>
<th>陡峻山地</th>
<th>山嶺區</th>
<th>丘陵地或森林地</th>
<th>平坦耕地</th>
<th>非農業使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>無開發計畫區之遶流係數</td>
<td>0.75~0.90</td>
<td>0.70~0.80</td>
<td>0.50~0.75</td>
<td>0.45~0.60</td>
<td>0.75~0.95</td>
</tr>
<tr>
<td>有開發計畫區之遶流係數</td>
<td>(1)開發中</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(2)開發後</td>
<td>0.95</td>
<td>0.90</td>
<td>0.90</td>
<td>0.85</td>
</tr>
</tbody>
</table>

資料來源：行政院農委會，「水土保持技術規範」第十八條。

三、集水區分區

本橋樑位於石門水庫上游集水區內，跨越阿姆坪與枕頭山兩地間。本計畫涉及開挖整地僅南側 A2 橋台，因此相關水保設施亦針對此處施設，集水分區亦針對此處檢討，此處集水面位於局部高地上，故集水區面積約為開發基地面積 228 平方公尺。有關本基地流域現況詳見圖 4-1 環境水系圖所示。
圖 4-1 環境水系圖(五千分之一象片基本圖)
四、集流時間

依據行政院農委會所頒「水土保持技術規範」第十九條之規定，集流時間(\(t_c\))係指雨水自集水區最遠處到達工程地點出水口所需之時間：

\[t_c = t_1 + t_2 = \left(\frac{\ell}{v} \right) + \left(\frac{L}{W} \right) \]

式中: \(t_c\) : 集流時間

\(t_1\) : 流入時間 (雨水經地表面由集水區邊界流至河道所需時間)

\(t_2\) : 流下時間 (雨水經河道由上游至下游所需時間)

\(\ell\) : 坡面長度，本基地上游集水區坡面表層流長約12.76m

\(v\) : 潮地流速，南側橋台位處既有高腳平台，故採用0.45(m/sec)計算

\(L\) : 渠道長度，渠道上游流至下游之水平距離，

本場區內集水區渠道長度約19.36m

\(W\) : 流下速度 (公尺/秒)，採曼寧公式求算，採1.5m/sec 估算。

代入公式得: \(t_c = t_1 + t_2\)

\[= \left(\frac{12.76}{0.45} \right) + \left(\frac{19.36}{1.5} \right) \]

\[= 28.36sec + 12.91sec = 0.688\text{min} \]

保守起見，全區集流時間取 \(t_c = 0.5\text{min}\)

五、利用地下水或湧水地區

本基地不利用地下水。
4-2 計畫路線地形

一、地理位置

本申請基地位於桃園縣大溪鎮阿姆坪地區，預計新建橋樑位置跨越石門水庫。往來交通可由大溪地區循省道台 7 線往慈湖、復興方向前行，過百吉隧道，右轉鄉道前行，經龍珠灣、湖濱飯店即可達本基地；或出百吉隧道前行，於百吉社區右轉阿姆坪前行，亦可通達至本基地，基地對外交通尚稱便利。

有關本基地地理位置詳見圖 4-2 所示(行政院農業委員會林務局農林航空測量所出版之「9622-I-072 大溪坪」、「9622-I-073 長興」圖幅，比例為 1：5000 之影像基本圖)。
圖 4-2 基地地理位置圖（五千分之一像片基本圖）
二、現況地形

本計畫路段跨越石門水庫上游集水區，連接阿姆坪及枕頭山。北側 A1 橋台位於阿姆坪，順接既有六米道路；而南側 A2 橋台位於枕頭山下邊坡約 EL.253m 之小平台處，本計畫興築橋台時將其整地至 EL.250m 並設置迴車平台，並以一 5 米寬 150 米長之高架引道向南銜接既有道路，此處地勢於南側高程稍高，坡度變化較大，北側高程較低，坡度變化較小。

三、坡度、坡向

本基地位於石門水庫上游集水區，為銜接阿姆坪及枕頭山之連絡橋樑，申請用地之現況地形經實地測量，其成果詳見圖 4-3-1 及圖 4-3-2 現況地形圖。

各用地之坡度、坡向及地形特徵分敘如後：

1. 北側 A1 橋台位於阿姆坪 6 米既有道路下邊坡小平台處，高程約在 EL.245m~EL.248m 附近，地勢由西向東傾斜。

2. 南側 A2 橋台位於枕頭山下邊坡約 EL.253m 之小平台處，本計畫興築橋台時將其整地至 EL.250m 並設置迴車平台，並以一 5 米寬 150 米長之高架引道向南銜接既有道路，此處地勢於南側高程稍高，坡度變化較大，北側高程較低，坡度變化較小。

3. 南側引道銜接南側 A2 橋台及既有道路，沿枕頭山下邊坡落墩跨越山溝、山坡等地形，此處地勢原則上由東向西傾斜。
4-3 計畫路線地質

本基地依據水土保持義務人委託復陸工程顧問股份有限公司執行「石門水庫上游集水區阿姆坪至枕頭山間橋樑新建工程委託規劃設計監造技術服務」之地質調查及鑽探工作報告，茲摘錄其成果報告內容如下所述：

一、區域地質

1. 地層

根據中央地質調查所出版之桃園圖幅(詳圖4-4 所示)，基地地層屬北新世之桂竹林層，桂竹林層主要分佈於大埔至大溪，大溪背斜軸部及三民溪一帶，阿姆坪之金山向斜軸部以及土城向斜一帶，可分為上下兩段，上段以灰灰色細粒鬆砂岩為主，下有深灰色頁岩，岩層之層厚約20公分至1公尺，亦有厚至2~4公尺者，砂岩之膠結疏鬆易碎，層面上常有砂棒，含貝類化石。下段則以青灰色細粒塊狀砂岩為主，夾有砂質頁岩，砂岩之層厚約為3~5公尺，泥質而含有石英粒及雲母碎片，偶有貝類化石，但保存不佳，含貝類化石者，經水溶後，再膠結之砂岩，則特別堅硬而緻密，因而在地上造成峭壁或層巖。本層在台灣北部地區，包括台北縣、桃園縣、新竹縣，本層通常分為兩段，而有不同的名稱，但在本圖幅，因本層之露頭不佳，上下兩段之界線不明確，故不予分段。本層之沉積環境屬於淺海。本層之厚度變化頗大，且大多被斷層所截切，但於大埔至大溪間特厚，約達1200~1500公尺。
第四章 基本資料
2. 地質構造

根據中央地質調查所出版之桃園圖冊，基地鄰近分佈之地質構造為金山向斜及屈尺斷層，以下簡述各地質構造分佈之情況：

(1) 金山向斜

本向斜位於喜龍、圓山、經石門水庫至阿姆坪一帶，向東則逐漸傾沒。軸部最新地層為桂竹林層，其西北翼地層之傾斜約為 45~60 度，東南翼地層出露甚少，大部份被位於其東南方之屈尺斷層所截切。基地位於向斜軸部，擬新建之橋樑恰跨越該向斜。

(2) 屈尺斷層

本斷層大致呈東北－西南走向，自高遶經石門水庫上游、復興、樂樂谷、熊空、江南腳山至廣興而出本區範圍，斷層線長達 30 公里，其層位落差於復興附近最大，約達 4000 公尺，向南則漸小，至高遶一帶則降為 700 公尺，其地面之斷層面傾角約為 50~80 度，傾向東南。基地位新建橋樑之南端，距屈尺斷層約為 300 公尺。
二、環境地質

基地位於桃園縣石門水庫集水區，因位於大漢溪支流河岸旁，本次特依一般環境地質評估準則，評估潛在的地質災害，分述如下：

1. 崩塌

在重力的影響下，斜坡上的土石不斷地向下坡方向移動的現象，稱為塊體運動，或稱斜坡運動。山崩是一種快速的斜坡運動。通常而言，重力的作用是永不停止，但是要使土石移動，必須土石所受重力大於其本身的慣性才行。影響山崩發生的因素可為內在和外在兩種，內在因素在於土石本身，主要包括(1)礦物組成性質、(2)地質構造、(3)地下水的存在、(4)地形、(5)下伏地層垮塌、(6)地震、(7)其他，這些因素都是觸發山崩的潛在因子。崩塌是最常見的地質災害，也是坡地開發須特別注意的地質災害，依其運動的方式及發生的機制，可分為多種型態。

以本基地而言，BH-2、BH-4 及 BH-5 鑽孔位於邊坡，根據現地地層分佈情況研判，雖無產生大規模崩塌現象的地形，但小規模之表土崩落，因水庫蓄水位昇降，而邊坡產生乾濕交替時，應特別注意。

2. 指溝侵蝕與向源侵蝕

鬆軟的風化岩屑、土層及崩積土層容易受到遝流的沖刷作用，而在山坡上形成一條條的侵蝕溝。這些侵蝕會加速坡面的侵蝕與破壞，而濫墾山坡地往往會使侵蝕更加惡化，不但造成土壤流失，豪雨時還可能引起更嚴重的土石流或崩塌災

第四章 基本資料 4-14
害，主要分佈在坡度較大的風化岩層、土層或崩積土堆積區。指溝侵蝕的整治首重坡地的排水，可利用排水工導引坡上遶流，以減少坡面的沖刷，避免侵蝕擴大，並配合種植穩定坡面。如有道路經過時，應設涵管導流，以免路基受到遾流的沖蝕破壞。位於河川上游的侵蝕溝，其持續性源頭延伸與擴張的結果會把集水區的末端侵蝕或一湯匙狀的凹坡地形，其上緣並會持續不斷的崩落，是為向源侵蝕作用。

基地裸露之邊坡，因地質材料較年輕層侵蝕盛行的地形，開發使用時要特別注意橋墩處，地表遾流及排水的問題。

3. 河岸侵蝕

河岸侵蝕主要發生於河曲轉彎處的外側（切割坡），因受河水強烈的侵襲，而將坡腳淘空，造成崩塌災害，特別在順向坡發達地區，河岸侵蝕可能引發大規模之地質災害。因此在利用這些地區時，應與河岸侵蝕區保持一段安全的後退距離，並構築護岸工程，以防止河岸侵蝕繼續擴大。

本基地恰為於大漢溪支流之沖積河床上，應預防洪水期大量遾流可能造成橋樑基礎之侵蝕災害。

4. 基礎沈陷

在崩積土、人為填土區及斷層破碎帶，由於基礎多為非均質且強度較弱，高孔隙大、不易壓實及抗剪力低等特性。在其上興建道路或其它建物，於其承受之負載超過基礎本身之抗剪強度時，易藉由基礎物質的壓縮或流動，造成基礎面的下陷，使其上的道路或建物受到損害。

本基地基質皆屬上新世桂竹林層之砂岩層，主要開發地區
無崩塌土分佈，並無人為填土或崩塌土分佈，對一般土木、建築基礎沈陷影響甚微。

5. 地盤下陷

在礦產分佈的區域，雖然目前區內所有的煤礦均已排棄廢礦，但留在地下之廢棄礦坑往往由於潛變，支撐腐壞，風化岩盤崩落及地下水活動等因素而造成礦坑塌陷，形成巨大之空洞，以致引起地表下陷，造成地表建築物、農林資源及地下水资源之損害，尤其長壁式採煤法之採掘跡，更易引起大範圍之沉陷。或許煤礦採掘跡之失敗並不一定造成土壤或岩石之破壞，但其將會減少土壤或岩石層之強度，當額外之覆土壓力或建築物荷重增加時，即會造成地盤下陷。

本基地區域地層，並無礦產礦坑，交通隧道通過或超限利用地下水之現象，因此無地盤下陷之可能。
三、地震概况

蔡義本等（1977）確認台灣主要有三個地震帶：東北地震帶、東部地震帶及西部地震帶。台灣東北及其東邊外海的地震帶（即東北地震帶）是由一個厚約50公里向西北傾斜的班式帶（Benioff Zone）所形成，此帶的南邊屬於淺震，向北逐漸加深。東部地震帶自宜蘭東北方海底向南西延伸至春半島東方，其寬約130公里。東部地震帶及東北地震帶的重疊地震帶是地震最活躍的地區。西部地震帶起自台北附近，向南南西延伸，止於台南附近，其寬約80公里。台灣島西北部、西南部以及澎湖群島，歷年來沒有大地震發生，是屬於比較安靜的地方。

在常受到地震災害的地方，重大工程如高層建築、橋樑、水壩、核能電廠等的結構設計，必須考慮工址過去所觀測到的最大震度。各國因耐震設計之需要而頒佈地震分區圖。基地位於桃園縣，根據台灣地區地震分區圖屬地震乙區，震區水平加速度係數$Z = 0.23$。
四、基地工程地質

1. 地表地質調查

根據現地鑽探及地表地質調查結果，基地表層為厚度不一的沖積土層覆蓋。基地岩性應屬上新世之桂竹林層，主要由砂岩、粉砂岩、泥岩和頁岩的互層組成，全區表土層覆蓋良好，並無明顯露頭出現，部份裸露邊坡可見高河階地之礫石堆積層，厚度約介於 2~5 公尺不等，礫石尺寸以數公分至十數公分者居多。

2. 地下地層分佈與工程性質

根據現地地質鑽探結果，繪製基地地層剖面圖詳見圖 4-5 所示，有關鑽孔深度內地層分佈情況及工程性質如後：

(1)第一層覆土層

主要為黃色沉泥質粘土及含細砂。分佈深度約自各鑽孔地表面至地表下 1.8 公尺 (BH-2 號孔) 至 7.8 公尺 (BH-3 號孔)之間。其中 BH-3 號孔之覆土層屬湖積層，現場標準貫入試驗之 N 值平均為 2 Blow/ft，具極軟弱稠度，平均總體單位重為 1.71t/m³，自然含水量平均為 49.5%。液性限度及塑性指數分別為 37.5%及 13.3%；其餘各孔之覆土層為桂竹林層完全化後之殘留土壇，因冷風化岩塊，現場標準貫入試驗 N 值大部份皆大於 60 Blow/ft，即垂直向之承載力仍佳，能完成劈管取樣者，平均為 9 Blow/ft，具堅實稠度，平均總體單位重為 19.9t/m³，自然含水量平均為 29.9%。

(2)第二層岩層

屬上新世之桂竹林層，各鑽孔鑽取岩心主要由砂岩為
主，BH-3 號孔高程較低，於該鑽孔地表下 11.2 公尺處鑽至砂頁岩。

上新世之桂竹林層之岩層，地層年代較新，由泥質物膠結，岩層膠結不良，孔隙率大，透水性較一般岩層高，開挖非常容易，依工程岩盤強度分類屬極低強度岩盤，做為一般土木、建築之基礎承載層仍佳。

根據現地鑽取之岩心進行之力學試驗結果，微觀岩心之力學強度參數，受岩體風化程度及岩性影響極大，其中岩石單軸壓縮試驗強度，Qu 約介於 13.0kg/cm²~30.1kg/cm² 之間；岩石直接剪力試驗結果，岩心凝聚力 Cp/r 約介於 0.98/0.21kg/cm²~11.25/1.05kg/cm² 之間、岩心摩擦抗剪角 φp/r 約介於 36.2°/28.1°~66.3°/28.4° 之間。

綜合實驗室各項試驗結果及現場鑽探情況，歸納基地土層之強度參數及建議參數詳見下表。

<table>
<thead>
<tr>
<th>表 4-3 簡化地層及建議參數表</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>土層種類</td>
<td>γm (t/m³)</td>
<td>Cp/r (t/m²)</td>
<td>φp/r (°)</td>
<td>Qu (t/m³)</td>
</tr>
<tr>
<td>覆土層</td>
<td>1.90</td>
<td>1.0</td>
<td>28.0</td>
<td>—</td>
</tr>
<tr>
<td>砂岩層</td>
<td>2.35</td>
<td>10.0/2.0</td>
<td>38.0/33.0</td>
<td>200</td>
</tr>
<tr>
<td>*砂頁岩層</td>
<td>2.35</td>
<td>15.0/5.0</td>
<td>40.0/35.0</td>
<td>300</td>
</tr>
<tr>
<td>**卵礫石層</td>
<td>2.30</td>
<td>1.0</td>
<td>35.0</td>
<td>—</td>
</tr>
</tbody>
</table>

備註：* 表 BH-3 鑽孔號
** 表 BH-2 鑽孔號
五、工程地質評估

1. 依據基地區域地質分佈情況，屬上新世之桂林層，鑽探深度內以覆土層，砂岩及砂頁岩為主。

2. 基地鑽探深度內以岩層為主，不會產生液化之機制，基地鑽孔位地層並無可能產生液化現象。

3. 根據環境地質評估原則及現地踏勘調查結果，基地需注意裸露邊坡之向源侵蝕、指溝侵蝕及因洪流而產生之橋樑基礎沖蝕等問題。
第五章 道路修築

5-1 道路平面及斷面

本計畫橋樑及高架引道平面配置詳圖 5-1-1~5-1-4 所示，縱剖圖詳圖 5-2~5-3 所示。

5-2 挖、填土石方區位

本計畫主要為橋樑及高架引道工程，非屬路堤路墊段，且橋墩基礎工程皆屬樁基礎，完工後不改變原有地形。北側 A1 橋台因完成面順接既有道路，僅於施工期間有開挖行為，完工後對計畫區之地形地貌幾乎沒有影響。而南側 A2 橋台及迴車平台於施工時，將降挖約 3 米，並以 1：1 之修坡銜接鄰近坡地。因此本計畫主要局部改變地形地貌為南側 A2 橋台工程，其開發前後地形圖詳見圖 5-4。挖、填土石方區位圖詳圖 5-5 所示。

本工程使用面積為 13,981.73m²，主要配合橋樑及高架引道之基礎工程作業，挖方量為基礎之開挖土方量外，僅有配合 A2 橋台之設置產生少部分水土保持挖填整地行為。另外因位於河道之基礎需以圍堰施作，本計畫將上述之挖方去除不適用材料用於圍堰工程尚欠土方量，因此圍堰工程須向外借方約 7,497.199m³，待工程完工；圍堰拆除之後將予以棄方。經整體計算水土保持整地挖填土石方，挖方約 8,348.353m³，填方 15,509.552m³，借方為 7,497.199m³，棄方為 10,287.200m³。詳細土方計算詳表 5-1。
表 5-1 挖填土方計算表

<table>
<thead>
<tr>
<th>項目</th>
<th>挖方(m³)</th>
<th>填方(m³)</th>
<th>借方(m³)</th>
<th>素方(m³)</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 橋樑及基礎</td>
<td>1605.961</td>
<td>1167.993</td>
<td>0.000</td>
<td>437.967</td>
<td>(含損耗,素方用於回填)</td>
</tr>
<tr>
<td>P2 橋樑及基礎</td>
<td>942.248</td>
<td>463.663</td>
<td>0.000</td>
<td>478.586</td>
<td>(含損耗,素方用於回填)</td>
</tr>
<tr>
<td>P3 橋樑及基礎</td>
<td>1748.643</td>
<td>1360.395</td>
<td>0.000</td>
<td>388.248</td>
<td>(含損耗,素方用於回填)</td>
</tr>
<tr>
<td>A1 橋台、基礎及翼樑</td>
<td>448.596</td>
<td>400.246</td>
<td>0.000</td>
<td>48.350</td>
<td>(含損耗,素方用於回填)</td>
</tr>
<tr>
<td>A2 橋台及基礎</td>
<td>1139.804</td>
<td>1075.072</td>
<td>0.000</td>
<td>64.732</td>
<td>(含損耗,素方用於回填)</td>
</tr>
<tr>
<td>A2 翼樑及枕頭山台</td>
<td>1473.893</td>
<td>754.983</td>
<td>0.000</td>
<td>718.910</td>
<td>(含損耗,素方用於回填)</td>
</tr>
<tr>
<td>主橋基礎及上層</td>
<td>303.600</td>
<td>0.000</td>
<td>0.000</td>
<td>303.600</td>
<td>(直徑1.5m基樁每m含損耗約1.944m³以2m³計,素方用於回填)</td>
</tr>
<tr>
<td>主橋基礎及上層岩層</td>
<td>210.000</td>
<td>0.000</td>
<td>0.000</td>
<td>210.000</td>
<td>(直徑1.5m基樁每m含損耗約1.944m³以2m³計,素方用於回填)</td>
</tr>
<tr>
<td>引道橋樑及上層</td>
<td>11.400</td>
<td>0.000</td>
<td>0.000</td>
<td>11.400</td>
<td>(直徑1.5m基樁每m含損耗約1.944m³以2m³計,素方用於回填)</td>
</tr>
<tr>
<td>引道橋樑及上層岩層</td>
<td>319.200</td>
<td>0.000</td>
<td>0.000</td>
<td>319.200</td>
<td>(直徑1.5m基樁每m含損耗約1.944m³以2m³計,素方用於回填)</td>
</tr>
<tr>
<td>排水明溝</td>
<td>19.008</td>
<td>0.000</td>
<td>0.000</td>
<td>19.008</td>
<td>(33M,每M0.576方,素方用於回填)</td>
</tr>
<tr>
<td>小計</td>
<td>8348.353</td>
<td>5222.352</td>
<td>0.000</td>
<td>3126.001</td>
<td></td>
</tr>
<tr>
<td>可用於回填素方量</td>
<td>2790.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-3 陸間土石方之處理方法、地點、安設設施及表土處理

本計畫橋樑、高架引道基礎及橋台整地工程土石方儘量以挖埋平衡為原則，所有挖方除不適用於回填之材料外，均在基地內回填處理，因此配合基地開設之期程，將依據相關法令規定於工區內適當地點設置土石方暫置場，保存表土及適用於回填之土方材料，並施設相關臨時防災措施，以維安全。至於不適
用回填之材料則由合法清運業者清運之。而剩餘土石方則將運供湳仔溝整治工程使用。
說明：本工程挖填方除A2橋台之外，主要為橋樑及高架引道樁基礎施工導致。
第六章 水土保持設施

本計畫申請用地位於石門水庫上游集水區內，計畫橋樑跨越石門水庫，本案之橋墩考量可能之施作方式有圍堰及沉箱兩種方式，再施以樑徑1.5m之全套管基樁施工，而橋台之基礎則依照相關設計圖中規定之坡度進行挖方及整地作業。因為橋基礎工區面積甚小，完工後又不影響原地形地貌，故無須設置滯洪及沉砂池等水土保持設施。

主要之水土保持設施為排水設施及植物工程；有關本計畫水土保持措施及配置詳見圖6-1，數量統計詳如後表所示。

表6-1 水土保持設施數量表

<table>
<thead>
<tr>
<th>一、排水工程</th>
<th>單位</th>
<th>數量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.排水明溝(截水溝)</td>
<td>m</td>
<td>30</td>
</tr>
<tr>
<td>二、植生工程</td>
<td>m³</td>
<td>133</td>
</tr>
</tbody>
</table>
6-1 排水設施

本計畫開挖整地作業主要為南側 A2 橋台，由於位於枕頭山下邊坡之小平台，鄰近地勢東南向西北傾斜，故本橋台之集水區主要為完成後廻車道使用範圍及上邊坡之修坡面。故針對本集水區之特性，於廻車道內周界佈設排水溝，收納逓流水，再放流排入石門水庫。排水設施設計詳以下所述。

1.設計依據

本排水系統計算均依行政院農委會所頒之「水土保持技術規範」為設計計算準則。

(1)計畫逓水逓流量

採用合理化公式：

\[Q = \frac{1}{360} \times C \times I \times A \]

式中 Q：設計頻率之尖峰逓流量(m³/sec)

A：集水面積(ha)

C：逓流係數

I：桃園地區 25 年重現期距之設計逓雨強度(mm/hr)。

集流時間採用 0.5 分鐘。

(2)設計逓雨強度

依據第四章第一節之結論，以行政院農業委員會所
頒「水土保持技術規範」所提供 25 年重現期距之逓雨強
度公式，為本基地排水系統之設計依據。
\[I_{25}^{25} = \frac{1635.59421}{(t + 55)^{0.59200}} \]

(3) 排水系統斷面設計

各排水溝渠斷面計算，採用曼寧公式：

\[V = \frac{1}{n} \times \frac{2}{R^{3}} \times \frac{1}{S^{2}} \]

式中，V：設計流速，公尺／秒。

n：粗糙率，L型溝採用0.015。

R：水力半徑，R = A/P。

P：澀透邊。

S：水力坡降。

依據「水土保持技術規範」設計流量時，混凝土溝最大流速為6.1公尺／秒；出水高則依設計水深之百分之二十五計算，最小值為二十公分。

2. 排水系統配置及水理分析：

本基地依現況地形地勢，於基地周側構築截排水溝，匯集後排入石門水庫內。有關本計畫排水設施容量設計詳見水理計算。

本基地之排水系統主要依據25年一次頻率之降雨強度計算排水溝通水流量，經水理計算後，排水分區之匯流量計算彙整如表6-2，排水系統水理計算詳見表6-3。排水系統配置詳見圖6-2，設施尺寸詳見圖6-3所示。
(1) 逹流量計算

表 6-2 排水分區流量表

<table>
<thead>
<tr>
<th>排水系統</th>
<th>集水分區</th>
<th>集水面積 (ha)</th>
<th>逹流係數 C</th>
<th>集流時間 Tc(min)</th>
<th>降雨強度 I20(mm/hr)</th>
<th>洪峰流量 Q20(cms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>截水溝</td>
<td>遠車台及上邊坡集水面積</td>
<td>0.0228</td>
<td>0.95</td>
<td>0.5</td>
<td>151.72</td>
<td>0.0091</td>
</tr>
</tbody>
</table>

(2) 排水溝設計尺寸:

排水溝設計尺寸之水理計算步驟:

渠道斷面溝底寬 w，溝深為 h，坡降 S

$$Q = (w \times h) \times 1/0.015 \times (w \times h / (2h + w))^{2/3} \times (S)^{1/2}$$

經試誤法試算，求得水深 h 滿足上式時，

流速 $$V = 1/0.015 \times [w \times h / (2h + w)]^{2/3} \times (S)^{1/2}$$

取出水高 20 公分以上，有關水理分析詳如後表所示。

表 6-3 排水系統逹流量水理計算表

<table>
<thead>
<tr>
<th>類別</th>
<th>流量</th>
<th>最小渠底</th>
<th>溝寬 (m)</th>
<th>試算水深 (m)</th>
<th>流速 (m/sec)</th>
<th>最小渠深 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>基地截水溝</td>
<td>0.0091</td>
<td>0.003</td>
<td>0.3</td>
<td>0.07</td>
<td>0.47</td>
<td>0.3</td>
</tr>
</tbody>
</table>

二、坡面截水及排水處理

本基地截排水主要於 A2 橋台周界處設置截排水溝渠截取坡面逹流，防止逹流漫流至基地。

第六章 水土保持設施 6-5
說明:水溝寬深尺寸依地形溝溝長及洩水坡度計算，註明截面尺寸及坡度尺寸
6-2 滯洪及沉砂設施

滯洪設施係指具有降低洪峰流量、遲滯洪峰到達時間或增加入滲功能之設施；其目的在於降低因開發而增加下游地區洪峰流量之衝擊。而沉砂設施主要因應開發行為導致產生之泥砂量予以截流。

本計畫主要為橋樑及高架引道工程，其基礎工程工區甚小，完工後又不影響所在地石門水庫之原有地形地貌，增加之滯流量亦甚少，故不計畫設置永久性及臨時性滯洪沉砂等設施。

6-3 邊坡穩定設施

南側A2橋台及迴車平台於施工時，將隆挖約3米，並以1:1之修坡銜接鄰近坡地，於植栽綠化後將無邊坡泥沙沖刷問題。

南側A2橋台後方邊坡穩定採用美國普渡大學所發展之PCSTABL電腦程式進行分析，該程式係利用極限平衡法(Limit Equilibrium)對二維之邊坡進行邊坡穩定問題，且以切片法計算安全係數。此程式目前為國內工程界進行邊坡穩定分析時最常使用之程式。

各種環境狀況說明於下：

(1) 平時狀況

即現有地形一般情況下，土壤維持其自然含水量，土/岩層內維持常態之地下水位。根據埋設之觀測井內水位量測結果與回填後地形變化與現有排水路之關係，地下水位約低於完成面地表下0~2公尺。
(2) 地震狀況

根據內政部營建署頒佈之「建築物耐震設計規範與解說」，本基地地屬地震乙區，其震區工址水平加速度係數 Z 為 0.23(475 年迴歸周期)。進行邊坡穩定分析時，邊坡分析之水平加速度採震區工址水平加速度係數 Z(0.23g)，垂直加速度則採水平加速度之 1/3(0.08g)。

(3) 暴雨狀況

當基地在暴雨的情況下，地表水無法迅速排除或入滲造成地下水位上升，假設地下水位上升至地表。

根據分析邊坡剖面現有地形狀況與基地完成之鑽探調查試驗成果，研判之合理參數範圍列於表 4-3。依據內政部營建署民國 90 年 10 月初版”建築物基礎構造設計規範”邊坡穩定之安全係數要求如表 6-4 所示。本工程 A2 橋台後邊坡之穩定分析結果整理如表 6-4 所示。詳細分析成果圖及程式輸出結果(部分摘錄)如圖 6-4-1~6-4-3 與附錄二所示。

表 6-4 邊坡穩定分析與規範要求安全係數一覽表

<table>
<thead>
<tr>
<th>環境狀況</th>
<th>建築物基礎構造設計規範</th>
<th>A2 橋台後邊坡</th>
</tr>
</thead>
<tbody>
<tr>
<td>平時</td>
<td>1.50</td>
<td>2.12</td>
</tr>
<tr>
<td>地震</td>
<td>1.20</td>
<td>1.70</td>
</tr>
<tr>
<td>暴雨</td>
<td>1.10</td>
<td>1.57</td>
</tr>
</tbody>
</table>

由上述分析結果顯示，無論平時、地震或暴雨等不同環境狀況下，邊坡之安全係數均能滿足規範之要求。
圖6-4-1 邊坡穩定分析圖 (平時)

Safety Factor Are Calculated By The Wesaffled Bishop Method

第六章 水土保持設施 6-10
圖6-4-2 邊坡穩定分析圖 (地震)
第六章 水土保持设施
6-4 植生工程

1. 植生設施

本申請用地主要為橋基工程，並無植生之需要，僅於A2橋台上邊坡配合邊坡保護進行綠美化，以種植具有水土保持功能之景觀草種為主，兼可保持地面覆蓋，避免地表土壤沖蝕。若基地內施工影響既有樹林，將盡量予以保留及移植。有關本基地之植生綠化配置詳見圖6-5，植生綠化工法詳圖詳見圖6-6。

2. 養護工作

養護工作為植生計畫成功之關鍵，故需確實做到。

(1) 洗水：草種植入後，應經常保持場地之濕潤，惟植後十天內，除雨天外，每天早晚須澆水一次，每次灌水量以草地呈現濕潤為原則，之後滿一個月內，每二天澆水一次，第二～三個月，若無下雨時則每週澆水一次，養護期滿一年內，視實際需要適時澆水。

(2) 追肥：植入後第一次追肥為滿一個月後，使用台肥43號，每平方公尺施以0.05kg，之後每二～三個月追肥一次，第一年一年追肥五次，而後每年春秋季各施灑追肥一次。

(3) 補植：裸地草類二個月之覆蓋率須達90%以上，若發現不萌芽，枯萎之處，應隨時補植草苗。
植草工法

NTS
第七章 道路修建期间之防灾措施

橋樑及高架引道工程由於主要為橋墩基礎之開挖，於施工中並不應設置臨時排水溝渠、臨時濱洪沉砂等防災措施。惟於施工期間，須特別注意颱風暴雨期間之氣象資料，及加強颱風暴雨期間之防災措施，並於各基礎工區四周設置活動標誌圍欄及警告標誌。

7-1 分區施工前之臨時排水及攔砂設施

橋樑基礎工程位於河道中，於施工中並不應設置臨時排水溝渠、臨時濱洪沉砂等防災措施。但針對位於邊坡上之橋台及引道基礎工程，為防止施工過程中因雨水沖蝕地表，增加土壌之沖刷，造成水源污染，故計畫配合既有地形於基礎施工處設置防災沙包，阻擋泥沙及導引排水。施工中臨時水上保持設施平面佈置詳見圖 7-1。
說明：監造技師將視工地施工狀況及進度調整防災沙包施設位置，原則上除基礎位於河岸採圍堤工程外，皆須於基礎間挖處施設防災沙包。

圖例

○○○○ 防災沙包
7-2 施工便道

本工程位於河道之基礎工程將以租用浮台進行重型機具之載運及臨時支撐打設。

A1 橋台因鄰近已有既存道路可配合吊車等施工重機具通行，不另行設置施工便道，其既有道路位置詳見圖 7-2。而位於枕頭山之 A2 橋台及引道工程既存道路僅可供施工機具通行至引道 10 號橋附近，因此將考量以架設浮台方式，由阿姆坪載運大型吊車等施工機具進入枕頭山施工；或於橋台至引道 10 號橋段設置約 100M 長 4~5M 寬施工便道(視水位情況或設置施工便橋，由 H 型鋼樑柱結構組成並鋪設覆工版)銜接既有道路，配置詳圖 7-3 所示。

7-3 剩餘土石方處理方法及地點

本計畫橋樑、高架引道基礎及橋台整地工程土石方僅量以挖填平衡為原則，所有挖方除不適用於回填之材料外，均在基內回填處理，因此配合基地開發之期程，將依據相關法令規定於工區內適當地点設置土石方暫置場，並施設相關臨時防災措施，以維安全。至於不適用回填之材料則由合法清運業者清運之。而剩餘土石方則將運供湳仔溝整治工程使用。
7-4 防災設施

1. 防災攔砂包

施工中為防止地表沖蝕及貯留雨水，於基礎開挖四周設置防災攔砂包。

2. 施工中交通安全警示

避免影響附近通行安全，設設置警示燈、告示牌等一式。

3. 防災用 PVC 不透水布及機械砂包

於裸露之炙時間挖坡面，鋪設 PVC 不透水布，並於坡趾處設機械砂包，藉以防止暴雨來襲及二次防災措施應變。

有關本基地防災設施構造物詳圖詳見圖 7-4 所示。
砂包空袋示意圖

砂包內填土立面圖

填置時，收口向上

斷面

0.65 ±

0.45 ±

0.35 ±

0.50 ±
第八章 預定施工方式

8-1 預定施工作業流程

1. 本基地為施工安全著想，於工區周界設置移動式警告標誌，避免非工程人員誤入工區而危害本身安全。為避免施工車輛輪胎夾帶泥砂而造成區外之環境污染，計畫於基地出入口處設置洗車台乙座。

2. 本基地配合地形及橋台挖填土方作業，進行基礎之挖填方施工。有關基地之詳細施工計畫詳見表8-1，作業流程詳見圖8-1。

表8-1 施工計畫表

<table>
<thead>
<tr>
<th>施工程序</th>
<th>第一階段</th>
<th>第二階段</th>
<th>第三階段</th>
</tr>
</thead>
<tbody>
<tr>
<td>工程項目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>項目1</td>
<td>• 初期防災工程</td>
<td>• 土方工程(橋台基礎開挖)</td>
<td>• 植生景觀工程</td>
</tr>
<tr>
<td></td>
<td>• 初步整地工程</td>
<td>• 排水工程</td>
<td>• 終期防災工程</td>
</tr>
<tr>
<td></td>
<td>• 中期防災工程</td>
<td></td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>60工作天</td>
<td>240工作天</td>
<td>30工作天</td>
</tr>
</tbody>
</table>

作業說明

1. 本階段工程包括基地整地、面除草測量放樣及土方工程之準備工作。
1. 本階段工程為將挖填土依照第一階段之測量結果及施工圖進行。
1. 本階段工程主要為植生工程。
2. 本階段工程主要為植生工程。
2. 詳第六章。
3. 配合之防災措施

(1) 工地警衛工作：進出工地設警示標誌及路障，由工地人員負責下列警衛工作。

＊嚴禁非工作人員進入工地。

＊工作人員未戴安全帽者，不得進入。

＊防範孩童進入工地。

＊臨時參觀人員，須經工務所許可方准進入，進入工務所借用安全帽並派員領看。

＊注意可能發生之危險情況並做緊急處理。
(2)施工圍籬及安全標誌：於施工範圍周邊設置施工圍籬，並且配設「安全告示牌」、「工地管理守則」、「非工地人員禁止進入」、「進入工地請戴安全帽」、「出入口請勿停車」、「操作半徑、請勿靠近」、「安全第一」等警示標誌。

(3)臨時用電管理办法：

＊各開關及電器須有防雨保護裝置。
＊各開關及電器應標示配電系統及電壓。
＊接線通過保險絲，且符合容量。
＊裝置場所不可有障礙物堵塞，不得靠近易燃物。
＊工作中、通行中有觸電危險之處均設防護欄。
＊接近工作場所之高壓線應以絕緣物加以包覆。

(4)防颱計劃：

＊颱風季為每年六月至十月。
＊工務所應儲備足夠之手電筒、鋼索、麻繩、鋁線與鉛録、鋸子、螺絲、鉗子、鈉金銅錠、安全護具砂包及其他必要之器具，並儲存於固定位置，災害產生時隨時取用。
＊挖土機、作業手應待駐工地，協助處理救災事宜。
＊注意工地地形、地勢情況以及洪水資料，注意氣象預報，以判斷可能發生之洪水，採取防範措施。
＊颱風或暴雨前應再清除排水溝或沉砂池。
＊成立防颱中心收聽記錄颱風動向、資料，督促、協調防颱搶修工作，及與警方防颱中心聯繫，必要時請求支援。

(5)防洪、防火

第八章 預定施工方式
＊防洪：詳見防颱措施

＊防火：工地工務所備妥消防滅火器及挖掘坑洞儲水，以備救火之用，倉庫易燃物品依規定方式存放並由專人負責安全。

(6)其他

＊倒樹即刻清除運離現場

＊定期派人噴洒藥物、維持環境清潔。

8-2 預定施工期限

本基地依「水上保持計畫審核監督辦法」及相關法規之規定，於目的事業主管機關核准開發之日起一年內，向主管機關申領核發水上保持施工許可證完成申報開工，預計完成時間則依主管機關核定之施工期限辦理。

表 8-2 預定施工進度表

<table>
<thead>
<tr>
<th>(日曆天)</th>
<th>0</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
<th>540</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 場地整理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 防火措施</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 排水系統</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 植生工程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 施工中安全措施</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第八章 預定施工方式 8-4
第九章 水土保持計畫設施項目、數量及總工程造價

本計畫有關水土保持工程之總經費預計約需新臺幣 5,777,269 元，工程數量及各項經費見表 9-1。

表 9-1 水土保持計畫施工經費估算總表

<table>
<thead>
<tr>
<th>單位</th>
<th>數量</th>
<th>單價 (NTS)</th>
<th>複價 (NTS)</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>一、基礎開挖</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 挖方</td>
<td>m³</td>
<td>8,348.35</td>
<td>100</td>
<td>834,835</td>
</tr>
<tr>
<td>2. 填方</td>
<td>m³</td>
<td>15,509.55</td>
<td>90</td>
<td>1,395,860</td>
</tr>
<tr>
<td>3. 借方</td>
<td>m³</td>
<td>7,497.20</td>
<td>68</td>
<td>509,810</td>
</tr>
<tr>
<td>4. 運棄方</td>
<td>m³</td>
<td>10,287.20</td>
<td>120</td>
<td>1,234,464</td>
</tr>
<tr>
<td>(一)項小計</td>
<td></td>
<td></td>
<td></td>
<td>3,974,969</td>
</tr>
<tr>
<td>二、排水工程</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 裁水溝</td>
<td>m</td>
<td>30</td>
<td>2,300</td>
<td>69,000</td>
</tr>
<tr>
<td>(二)項小計</td>
<td></td>
<td></td>
<td></td>
<td>69,000</td>
</tr>
<tr>
<td>三、植生工程</td>
<td>m²</td>
<td>133</td>
<td>100</td>
<td>13,300</td>
</tr>
<tr>
<td>四、臨時工程</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 施工中臨時擋排水</td>
<td>式</td>
<td>1</td>
<td></td>
<td>50,000</td>
</tr>
<tr>
<td>2. 施工中安全設施</td>
<td>式</td>
<td>1</td>
<td></td>
<td>40,000</td>
</tr>
<tr>
<td>3. 施工中交通安全設施維護(含施工便道)</td>
<td>式</td>
<td>1</td>
<td></td>
<td>1,630,000</td>
</tr>
<tr>
<td>(四)項小計</td>
<td></td>
<td></td>
<td></td>
<td>1,720,000</td>
</tr>
<tr>
<td>以上工程費合計</td>
<td></td>
<td></td>
<td></td>
<td>5,777,269</td>
</tr>
</tbody>
</table>

第九章 水土保持計畫設施項目、數量及總工程造價 9-1
附錄一

地籍資料
土地登記標本（地號全部）
大溪鎮三層段阿姆坪小段0047-0001地號

列印時間：民國93年08月06日11時51分

土地標示部

登記日期：民國060年02月20日
地目：水
使用分區：（空白）

民國093年01月

登記原因：地目變更
等則：13
面積：1,402.00平方公尺
使用地類別：（空白）

公告土地現值：100元/平方公尺

土地所有權部

登記次序：0001
登記日期：民國040年09月06日
原因發生日期：民國---年---月---日

所有權人：桃園縣大溪鎮
統一編號：0001000303
住址：（空白）
管理人：經濟部水利署北區水資源局
統一編號：44502641
住址：桃園縣龍潭鄉佳安村佳安路2號

權利範圍：全部
權利字號：---（空白）字第019606號

前次移轉表是原定地價：

093年01月

064年02月

9.1元/平方公尺

歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所 主 任 高清標
本案係依照分層負責規定授權承辦人員核發
溪地龍騰字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥
本核發機關：桃園縣大溪地政事務所

桃園縣大溪地政事務
土地登記謄本（地號全部）
大溪鎮三層段阿姆坪小段0047-0002地號

列印時間：民國093年08月06日11時52分

***************土地標示部***************

登記日期：民國---年--月--日
地目：林

等級：7

面積：**192,220.00平方公尺

使用分區：（空白）

民國093年01月，公告土地現值：**530元/平方公尺

其他登記事項：因分割增加地號：47－8，47－9

***************土地所有權部***************

登記次序：0001
登記日期：民國040年09月06日

原因發生日期：民國---年--月--日

所有權人：桃園縣大溪鎮

統一編號：0001000303

住址：（空白）

管理人：桃園縣大溪鎮公所

統一編號：43500407

住址：桃園縣大溪鎮普濟路11號

權利範圍：全部

權狀字號：---書狀省略字第-----號

當期申報地價：093年01月，**80.0元/平方公尺

前次移轉現值或原規定地價：

064年02月，**9.1元/平方公尺

歷次取得權利範圍：全部

其他登記事項：（空白）

大溪地政事務所

資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥

核發機關：桃園縣大溪地政事務所

桃園縣大溪地政事務所
土地登記膴本（地號全部）
大溪鎮三層段阿姆坪小段0047-0003地號

列印時間：民國93年08月06日11時52分

土地標示部

登記日期：民國060年02月20日
地　目：水
使用分區：（空白）
公告土地現值：****1,747元/平方公尺
其他登記事項：（空白）

土地所有權部

登記日期：民國052年05月20日
原因發生日期：民國--年--月--日
所有權人：桃園縣大溪鎮
統一編號：0001000303
住　　址：（空白）
管理　者：經濟部水利署北區水資源局
統一編號：44502641
住　　址：桃園縣龍潭鄉佳安村佳安路2號
權利範圍：全部
權狀字號：087溪土字第007257號
當期申報地價：093年01月　　******312.0元/平方公尺
前次移轉現值或原規定地價：
064年02月　　******9.1元/平方公尺
歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所　主　任　高清標
本案係依照分層負責規定授權承辦人員核發
溪地龍膽字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥
本膴本核發機關：桃園縣大溪地政事務所

桃園縣大溪地政事務
土地登記謄本（地號全部）
大溪鎮三層段阿姆坪小段0091-0000地號

列印時間：民國093年08月06日11時52分

土地標示部

登記日期：民國064年06月10日
地目：林
使用分區：（空白）
民國093年01月

等級：7
面積：47,310.00平方公尺
使用地類別：（空白）

公告土地現值：600元/平方公尺
其他登記事項：因分割增加地號：91-33

土地所有權部

登記次序：0002
登記日期：民國088年10月30日
登記原因：接管

原因發生日期：民國087年12月21日
所有權人：中華民國
統一編號：0000000158
住址：（空白）

管理：行政院農業委員會林務局
統一編號：03726702
住址：台北市中正區杭州南路一段2號

權利範圍：全部
權狀字號：------號

當期申報地價：093年01月 110.0元/平方公尺
前次移轉現值或原規定地價：
064年02月 14.5元/平方公尺
歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所 主任 高清標
本案係依照分層負責規定授權承辦人員核發
溪地觀隘字第011783號
資料保管機關：桃園縣大溪地政事務所

列印人員：葉月娥
本謄本核發機關：桃園縣大溪地政事務所

桃園縣大溪地政事務所
土地登記謄本（地號全部）
大溪鎮三層段阿姆坪小段0091-0005地號

列印時間：民國093年08月06日11時52分

土地標示部

登記日期：民國060年02月20日
地目：水
等則：13
使用分區：（空白）
面積：***63,149.00平方公尺
使用地類別：（空白）
公告土地現值：******100元/平方公尺
其他登記事項：（空白）

土地所有權部

登記次序：0002
登記日期：民國088年09月07日
原因發生日期：民國087年12月21日
所有權人：中華民國
統一編號：0000000158
住址：（空白）
管理著：經濟部水利署北區水資源局
統一編號：44502641
住址：桃園縣龍潭鄉佳安村佳安路2號
權利範圍：全部
權狀字號：---字第------號
當期申報地價：093年01月
前次轉轉現值或原規定地價：
67年10月
歷史取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所

本案係依照分層負責規定授權承辦人員核發
溪地龍騰字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥
本核發機關：桃園縣大溪地政事務所

桃園縣大溪地政事務
土地登記簿本

大溪鎮三層段阿姆坪小段0019-0000地號

列印時間：民國093年08月06日11時53分

土地標示部

登記日期：民國060年02月20日
地　目：水
使用分區：（空白）
等則：13
面　積：8,542.00平方公尺
使用地類別：（空白）
民國093年01月　公告土地現值：100元/平方公尺
其他登記事項：（空白）

土地所有權部

登記次序：0001
登記日期：民國040年09月06日
原因發生日期：民國---年--月--日
所有權人：桃園縣大溪鎮
統一編號：0001000303
住　址：（空白）
管理著：經濟部水利署北區水資源局
統一編號：44502641
住　址：桃園縣龍潭鄉佳安村佳安路2號
權利範圍：全部
權狀字號：（空白）字第019577號
當期申報地價：093年01月　100.0元/平方公尺
前次移轉現值或原規定地價：
067年10月　100.0元/平方公尺
歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所　主任　高清標
本案係依分層負責規定授權承辦人員核發
溪地標選字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥

核發機關：桃園縣大溪地政事務所
土地登記簿本（地號全部）
大溪鎮三層段阿姆坪小段0020-0000地號

列印時間：民國093年08月06日11時53分
頁次：1

土地標示部

登記日期：民國060年02月20日
地目：水
使用分區：（空白）

等則：13
面積：****2,531.00平方公尺
使用地類別：（空白）

公告土地現值：******100元/平方公尺
其他登記事項：（空白）

土地所有權部

登記次序：0001
登記日期：民國040年09月06日
登記原因：總登記

原因發生日期：民國---年--月--日

所有權人：桃園縣大溪鎮
統一編號：0001000303
住址：（空白）
管理署：經濟部水利署北區水資源局
統一編號：44502841
住址：桃園縣龍潭鄉佳安村佳安路2號

權利範圍：全部
權狀字號：---（空白）字第019578號

當期申報地價：093年01月 ******40.00元/平方公尺
前次移轉現值或原規定地價：
067年10月 ******100.00元/平方公尺
歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所主 任 高清標
本案係依照分層負責任規定承辦人員核發
地政閱覽字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥

資料核發機關：桃園縣大溪地政事務所

桃園縣大溪地政事務
土地登記證本（地號全部）
大溪鎮三層段阿姆坪小段0021-0000地號

列印時間：民國093年08月06日11時54分

土地標示部

登記日期：民國060年02月20日
地 目：水
使用分區：（空白）
民國093年01月 公告土地現值：******100元/平方公尺

土地所有權部

登記次序：0001
登記日期：民國040年09月06日
原因發生日期：民國---年--月--日
所有權人：桃園縣大溪鎮
管理著：經濟部水利署北區水資源局
住 址：（空白）
住 址：桃園縣龍潭鄉佳安村佳安路2號
權利範圍：全部
權狀字號：---（空白）字第019579號

本案係依照分層負責規定授權承辦人員核發
資料管轄機關：桃園縣大溪地政事務所
列印人員：葉月娥

大溪地政事務所 主 任 高清標
本件登記業經地政事務所核發
本件登記業經地政事務所核發

桃園縣大溪地政事務所
土地登記冊本（地號全部）
大溪鎮三層段阿姆坪小段0022-0000地號

列印時間：民國093年08月06日11時54分

土地標示部

登記日期：民國060年02月20日
地目：水
等則：13
使用分區：（空白）
面積：****2,604.00平方公尺
登記原因：地目變更

民國093年01月
公告土地現值：****100元/平方公尺

土地所有權部

登記次序：0001
登記日期：民國040年09月06日
原因登記日期：民國---年---月---日
所有權人：桃園縣大溪鎮
統一編號：0001000303
住址：（空白）
管理者：經濟部水利署北區水資源局
統一編號：44502641
住址：桃園縣龍潭鄉佳安村佳安路2號
權利範圍：全部
權利標號：---（空白）字第019580號
當期申報地價：093年01月
前次移轉現值或原規定地價：
067年10月
歷次取得權利範圍：全部

資料管轄機關：桃園縣大溪地政事務所

資料管轄機關：桃園縣大溪地政事務所

核發機關：桃園縣大溪地政事務所

列印人員：葉月娥

資料管轄機關：桃園縣大溪地政事務所

資料管轄機關：桃園縣大溪地政事務所

資料管轄機關：桃園縣大溪地政事務所

資料管轄機關：桃園縣大溪地政事務所

資料管轄機關：桃園縣大溪地政事務所
土地登記簿本（地號全部）
大溪鎮三層段阿姆坪小段0023-0000地號

列印時間：民國093年08月06日11時54分

土地標示部

登記日期：民國060年02月20日
地　目：水
使用分區：（空白）
民國093年01月，公告土地現值：******100元/平方公尺

土地所有權部

登記次序：0001
登記日期：民國040年09月06日
原因發生日期：民國---年--月--日

所有權人：桃園縣大溪鎮
統一編號：0001000303
住　址：（空白）
管理　者：經濟部水利署北區水資源局
統一編號：44502641
住　址：桃園縣龍潭巖佳安村佳安路2號

權利範圍：全部
權狀字號：---（空白）字第019581號
當期申報地價：093年01月　******40.0元/平方公尺
前次移轉價值或原規定地價：
067年10月　******100.0元/平方公尺
歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所　主任　高清標
本案係依照分層負責規定授權承辦人員核發
溪地龍膽字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥

桃園縣大溪地政事務所
土地登記謄本（地號全部）
大溪鎮三層段阿姆坪小段0024-0000地號

登記人數：民國093年08月06日11時54分

土地標示部

登記日期：民國060年02月20日
地　目：水
等則：13
面　積：****1,208.00平方公尺
使用分區：（空白）
民國093年01月　公告土地現值：******100元／平方公尺
其他登記事項：（空白）

土地所有權部

登記人數：0001
登記日期：民國040年09月06日
原因發生日期：民國---年---月---日
所有權人：桃園縣大溪鎮
統一編號：0001000303
住址：（空白）
管理業：經濟部水利署北區水資源局
統一編號：44502641
住址：桃園縣龍潭鄉佳安村佳安路２號
權利範圍：全部
權狀字號：---（空白）字第019582號
當時申報地價：093年01月　******40.0元／平方公尺
前次申報地價：064年02月　******30.2元／平方公尺
歷次取得權利範圍：全部
其他登記事項：（空白）

大溪地政事務所　主　任　高清標
本案係依照分層負責規定授權承辦人員核發
溪地開深字第011783號
資料管轄機關：桃園縣大溪地政事務所

列印人員：葉月娥

桃園縣大溪地政事務所
附錄二

邊坡穩定分析成果
STED

STABL6H FSmin=2.12
Safety Factors Are Calculated By The Modified Bishop Method
10 10
0. 6.4 3.06 6.9 1
3.06 6.9 6.1 7.4 1
6.1 7.4 9.1 8 7.9 1
9.18 7.9 11.07 10.2 1
11.07 10.2 12.95 12.6 1
12.95 12.6 14.84 14.9 1
14.84 14.9 16.1 14.9 1
16.1 14.9 17.4 14.9 1
17.4 14.9 18.66 14.9 1
18.66 14.9 19.93 14.9 1

SOIL
1
18.62 18.62 9.8 28. 0. 0. 1

WATER
1 9.8
6
0. 6.4
3.1 6.9
6.1 7.4
9.2 7.9
14.84 12.9
19.93 12.9

LIMITS
4 0
0. 0. 9.2 1.5
9.2 1.5 14.8 8.5
14.8 8.5 17.4 10.
17.4 10. 19.9 10.

CIRCL2-Bishop circular, search.
2 10
9.2 14.8 14.8 19.9
0. 2. 45. 45.
** STABL6H **
by
Purdue University
--Slope Stability Analysis--
Simplified Janbu, Simplified Bishop
or Spencer's Method of Slices
Run Date: 2004/12/10
Time of Run: 12:03 下午
Run By: John Smith, XYZ Company
Input Data Filename: Eamp-typ.dat
Output Filename: Eamp-typ.OUT
Plotted Output Filename: Eamp-typ.PLT

PROBLEM DESCRIPTION

10 BOUNDARY COORDINATES
10 Top Boundaries
10 Total Boundaries

Boundary X-Left Y-Left X-Right Y-Right Soil Type
No. (m) (m) (m) (m) Below Bnd
1 .00 6.40 3.06 6.90 1
2 3.05 6.90 6.10 7.40 1
3 6.10 7.40 9.18 7.90 1
4 9.18 7.90 11.07 10.20 1
5 11.07 10.20 12.95 12.60 1
6 12.95 12.60 14.84 14.90 1
7 14.84 14.90 16.10 14.90 1
8 16.10 14.90 17.40 14.90 1
9 17.40 14.90 18.66 14.90 1
10 18.66 14.90 19.93 14.90 1

ISOTROPIC SOIL PARAMETERS
1 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
No. (kN/m³) (kN/m³) (kPa) (deg) Param. (kPa) No.
1 18.6 18.6 9.8 28.0 0.00 0 1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water = 9.80
Piezometric Surface No. 1 Specified by 6 Coordinate Points
Point X-Water Y-Water
No. (m) (m)
1 .00 6.40
2 3.10 6.90
3 6.10 7.40
4 9.20 7.90
5 14.84 12.90
6 19.93 12.90

Searching Routine Will Be Limited To An Area Defined By 4 Boundaries
Of Which The First 0 Boundaries Will Deflect Surfaces Upward
Boundary X-Left Y-Left X-Right Y-Right
No. (m) (m) (m) (m)
1 .00 .00 9.20 1.50
2 9.20 1.50 14.80 8.50
3 14.80 8.50 17.40 10.00
4 17.40 10.00 19.93 10.00

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
20 Trial Surfaces Have Been Generated.
10 Surfaces Initiate From Each Of 2 Points Equally Spaced
Along The Ground Surface Between X = 9.20 m.
and X = 14.80 m.
Each Surface Terminates Between X = 14.80 m.
and X = 19.90 m.

Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 m.
2.00 m. Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of 45.0
And 45.0 deg.
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Examined. They Are Ordered - Most Critical
First.

** ** Safety Factors Are Calculated By The Modified Bishop Method ** **
Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.03</td>
<td>10.75</td>
</tr>
<tr>
<td>4</td>
<td>13.44</td>
<td>12.17</td>
</tr>
<tr>
<td>5</td>
<td>14.85</td>
<td>13.59</td>
</tr>
<tr>
<td>6</td>
<td>16.15</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = \text{*****} \), \(Y = 1360.5 \) and Radius, 1911.9

*** 2.118 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.02</td>
<td>10.76</td>
</tr>
<tr>
<td>4</td>
<td>13.42</td>
<td>12.19</td>
</tr>
<tr>
<td>5</td>
<td>14.81</td>
<td>13.63</td>
</tr>
<tr>
<td>6</td>
<td>16.03</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -571.2 \), \(Y = 589.8 \) and Radius, 821.8

*** 2.133 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.02</td>
<td>10.77</td>
</tr>
<tr>
<td>4</td>
<td>13.40</td>
<td>12.21</td>
</tr>
<tr>
<td>5</td>
<td>14.77</td>
<td>13.66</td>
</tr>
<tr>
<td>6</td>
<td>15.92</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -259.2 \), \(Y = 277.7 \) and Radius, 380.6

*** 2.164 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.00</td>
<td>10.78</td>
</tr>
<tr>
<td>4</td>
<td>13.35</td>
<td>12.26</td>
</tr>
<tr>
<td>5</td>
<td>14.67</td>
<td>13.76</td>
</tr>
<tr>
<td>6</td>
<td>15.64</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -135.1 \), \(Y = 153.7 \) and Radius, 205.1

*** 2.221 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.34</td>
<td>12.27</td>
</tr>
<tr>
<td>5</td>
<td>14.64</td>
<td>13.78</td>
</tr>
<tr>
<td>6</td>
<td>15.56</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -57.0 \), \(Y = 75.5 \) and Radius, 94.6

*** 2.403 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -47.6 \), \(Y = 66.1 \) and Radius, 81.3

*** 2.472 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>No.</td>
<td>X-Surf (m)</td>
<td>Y-Surf (m)</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.33</td>
<td>12.28</td>
</tr>
<tr>
<td>5</td>
<td>14.62</td>
<td>13.80</td>
</tr>
<tr>
<td>6</td>
<td>15.50</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -47.5; Y = 66.0 and Radius, 81.1

<table>
<thead>
<tr>
<th>No.</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.97</td>
<td>10.81</td>
</tr>
<tr>
<td>4</td>
<td>13.28</td>
<td>12.32</td>
</tr>
<tr>
<td>5</td>
<td>14.52</td>
<td>13.89</td>
</tr>
<tr>
<td>6</td>
<td>15.26</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -42.3; Y = 60.8 and Radius, 73.8

<table>
<thead>
<tr>
<th>No.</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.97</td>
<td>10.83</td>
</tr>
<tr>
<td>4</td>
<td>13.21</td>
<td>12.38</td>
</tr>
<tr>
<td>5</td>
<td>14.39</td>
<td>14.00</td>
</tr>
<tr>
<td>6</td>
<td>14.97</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -27.3; Y = 45.8 and Radius, 52.6

<table>
<thead>
<tr>
<th>No.</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.95</td>
<td>10.83</td>
</tr>
<tr>
<td>4</td>
<td>13.21</td>
<td>12.38</td>
</tr>
<tr>
<td>5</td>
<td>14.39</td>
<td>14.00</td>
</tr>
<tr>
<td>6</td>
<td>14.97</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -17.1; Y = 35.6 and Radius, 38.1

<table>
<thead>
<tr>
<th># FS a</th>
<th>Total</th>
<th>Saturated</th>
<th>Cohesion</th>
<th>Friction</th>
<th>Piez. Load Value</th>
<th>Horiz Eak</th>
<th>Vert Eak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STABL6H FSmin=1.70
Safety Factors Are Calculated By The Modified Bishop Method
枕頭山邊坡穩定分析

10
0. 6.4 3.06 6.9 1
3.06 6.9 6.1 7.4 1
6.1 7.4 9.18 7.9 1
9.18 7.9 11.07 10.2 1
11.07 10.2 12.95 12.6 1
12.95 12.6 14.84 14.9 1
14.84 14.9 16.1 14.9 1
16.1 14.9 17.4 14.9 1
17.4 14.9 18.66 14.9 1
18.66 14.9 19.93 14.9 1

SOIL
1
18.62 18.62 9.8 28. 0. 0. 1

WATER
1 9.8
3
0. 6.4
9.18 7.9
19.93 11.16

EQUAKE
0.23 0.08 0.

LIMITS
4 0
0. 0. 9.2 1.5
9.2 1.5 14.8 8.5
14.8 8.5 17.4 10.
17.4 10. 19.9 10.

CIRCL2-Bishop circular, search.
2 10
9.2 14.8 14.8 19.9
0. 2. 45. 45.
STABLGH

by
Purdue University

--Slope Stability Analysis--
Simplified Janbu, Simplified Bishop
or Spencer's Method of Slices

Run Date: 2004/12/10
Time of Run: 12:05 下午
Run By: John Smith, XYZ Company

Input Data Filename: E:amp-eq.dat
Output Filename: E:amp-eq.OUT
Plotted Output Filename: E:amp-eq.PLT

PROBLEM DESCRIPTION

BOUNDARY COORDINATES
10 Top Boundaries
10 Total Boundaries

<table>
<thead>
<tr>
<th>Boundary No.</th>
<th>X-Left (m)</th>
<th>Y-Left (m)</th>
<th>X-Right (m)</th>
<th>Y-Right (m)</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.00</td>
<td>6.40</td>
<td>3.06</td>
<td>6.90</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3.06</td>
<td>6.90</td>
<td>6.10</td>
<td>7.40</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6.10</td>
<td>7.40</td>
<td>9.18</td>
<td>7.90</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>9.18</td>
<td>7.90</td>
<td>11.07</td>
<td>10.20</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>11.07</td>
<td>10.20</td>
<td>12.95</td>
<td>12.60</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>12.95</td>
<td>12.60</td>
<td>14.84</td>
<td>14.90</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>14.84</td>
<td>14.90</td>
<td>16.10</td>
<td>14.90</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>16.10</td>
<td>14.90</td>
<td>17.40</td>
<td>14.90</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>17.40</td>
<td>14.90</td>
<td>18.66</td>
<td>14.90</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>18.66</td>
<td>14.90</td>
<td>19.93</td>
<td>14.90</td>
<td>1</td>
</tr>
</tbody>
</table>

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

<table>
<thead>
<tr>
<th>Soil Total Saturated Cohesion Friction Pore Pressure Piez.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (kN/m^3) (kN/m^3) (kPa) (deg) Param. (kPa) No.</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>18.6 18.6 9.8 28.0 .00 .00</td>
</tr>
</tbody>
</table>

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 9.80

Piezometric Surface No. 1 Specified by 3 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Water (m)</th>
<th>Y-Water (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.00</td>
<td>6.40</td>
</tr>
<tr>
<td>2</td>
<td>9.18</td>
<td>7.90</td>
</tr>
<tr>
<td>3</td>
<td>19.93</td>
<td>11.16</td>
</tr>
</tbody>
</table>

A Horizontal Earthquake Loading Coefficient

Of .230 Has Been Assigned

A Vertical Earthquake Loading Coefficient

Of .080 Has Been Assigned

Cavitation Pressure = .0 KPa

Searching Routine Will Be Limited To An Area Defined By 4 Boundaries
Of Which The First 0 Boundaries Will Deflect Surfaces Upward

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.

20 Trial Surfaces Have Been Generated.

10 Surfaces Initiate From Each Of 2 Points Equally Spaced
Along The Ground Surface Between X = 9.20 m.
and X = 14.80 m.

Each Surface Terminates Between X = 14.80 m.
and X = 19.90 m.

Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 m.

2.00 m. Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of 45.0
And 45.0 deg.

Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Examined. They Are Ordered - Most Critical
First
* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.03</td>
<td>10.75</td>
</tr>
<tr>
<td>4</td>
<td>13.44</td>
<td>12.17</td>
</tr>
<tr>
<td>5</td>
<td>14.85</td>
<td>13.59</td>
</tr>
<tr>
<td>6</td>
<td>16.15</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = ****** ; Y = 1360.5 and Radius, 1911.9

*** 1.700 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.02</td>
<td>10.76</td>
</tr>
<tr>
<td>4</td>
<td>13.42</td>
<td>12.19</td>
</tr>
<tr>
<td>5</td>
<td>14.81</td>
<td>13.63</td>
</tr>
<tr>
<td>6</td>
<td>16.03</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -571.2 ; Y = 589.8 and Radius, 821.8

*** 1.716 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.02</td>
<td>10.76</td>
</tr>
<tr>
<td>4</td>
<td>13.40</td>
<td>12.21</td>
</tr>
<tr>
<td>5</td>
<td>14.77</td>
<td>13.66</td>
</tr>
<tr>
<td>6</td>
<td>15.92</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -259.2 ; Y = 277.7 and Radius, 380.6

*** 1.749 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.00</td>
<td>10.78</td>
</tr>
<tr>
<td>4</td>
<td>13.35</td>
<td>12.26</td>
</tr>
<tr>
<td>5</td>
<td>14.67</td>
<td>13.76</td>
</tr>
<tr>
<td>6</td>
<td>15.64</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -135.1 ; Y = 153.7 and Radius, 205.1

*** 1.807 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.34</td>
<td>12.27</td>
</tr>
<tr>
<td>5</td>
<td>14.64</td>
<td>13.78</td>
</tr>
<tr>
<td>6</td>
<td>15.56</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -57.0 ; Y = 75.5 and Radius, 94.6

*** 1.991 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.34</td>
<td>12.27</td>
</tr>
<tr>
<td>5</td>
<td>14.64</td>
<td>13.78</td>
</tr>
<tr>
<td>6</td>
<td>15.56</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -47.6 ; Y = 66.1 and Radius, 81.3

*** 2.058 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>No.</td>
<td>X-Surf (m)</td>
<td>Y-Surf (m)</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.33</td>
<td>12.28</td>
</tr>
<tr>
<td>5</td>
<td>14.62</td>
<td>13.80</td>
</tr>
<tr>
<td>6</td>
<td>15.50</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -47.5, Y = 66.0 and Radius = 81.1

*** 2.059 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>No.</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.33</td>
<td>12.28</td>
</tr>
<tr>
<td>5</td>
<td>14.62</td>
<td>13.80</td>
</tr>
<tr>
<td>6</td>
<td>15.50</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -42.3, Y = 60.8 and Radius = 73.8

*** 2.110 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>No.</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.97</td>
<td>10.81</td>
</tr>
<tr>
<td>4</td>
<td>13.28</td>
<td>12.32</td>
</tr>
<tr>
<td>5</td>
<td>14.52</td>
<td>13.89</td>
</tr>
<tr>
<td>6</td>
<td>15.26</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -27.3, Y = 45.8 and Radius = 52.6

*** 2.393 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>No.</th>
<th>X-Surf (m)</th>
<th>Y-Surf (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.95</td>
<td>10.83</td>
</tr>
<tr>
<td>4</td>
<td>13.21</td>
<td>12.38</td>
</tr>
<tr>
<td>5</td>
<td>14.39</td>
<td>14.00</td>
</tr>
<tr>
<td>6</td>
<td>14.97</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At X = -17.1, Y = 35.6 and Radius = 38.1

*** 2.958 ***
枕頭山邊坡穩定分析 暴雨時

E:\邊坡穩-1\AMP-W.PL2 Run By: John Smith, XYZ Company 2004/12/10 12:07下午

<table>
<thead>
<tr>
<th>#</th>
<th>Soil Type</th>
<th>FS Total</th>
<th>Cohesion</th>
<th>Friction Angle</th>
<th>Piez. Unit Wt.</th>
<th>Intercept Angle</th>
<th>Surface No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>2.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STAB6H FSmin=1.57
Safety Factors Are Calculated By The Modified Bishop Method

STED
<table>
<thead>
<tr>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>3.06</td>
<td>6.9</td>
</tr>
<tr>
<td>6.1</td>
<td>7.4</td>
</tr>
<tr>
<td>9.18</td>
<td>7.9</td>
</tr>
<tr>
<td>11.07</td>
<td>10.2</td>
</tr>
<tr>
<td>12.95</td>
<td>12.6</td>
</tr>
<tr>
<td>14.84</td>
<td>14.9</td>
</tr>
<tr>
<td>16.1</td>
<td>14.9</td>
</tr>
<tr>
<td>17.4</td>
<td>14.9</td>
</tr>
<tr>
<td>18.66</td>
<td>14.9</td>
</tr>
</tbody>
</table>

SOIL

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.62</td>
</tr>
</tbody>
</table>

WATER

<table>
<thead>
<tr>
<th>1</th>
<th>9.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>3.1</td>
<td>6.9</td>
</tr>
<tr>
<td>6.1</td>
<td>7.4</td>
</tr>
<tr>
<td>9.2</td>
<td>7.9</td>
</tr>
<tr>
<td>14.84</td>
<td>14.9</td>
</tr>
<tr>
<td>19.93</td>
<td>14.9</td>
</tr>
</tbody>
</table>

LIMITS

<table>
<thead>
<tr>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.2</td>
<td>1.5</td>
</tr>
<tr>
<td>14.8</td>
<td>8.5</td>
</tr>
<tr>
<td>17.4</td>
<td>10.</td>
</tr>
</tbody>
</table>

CIRCL2

<table>
<thead>
<tr>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>14.8</td>
</tr>
<tr>
<td>0</td>
<td>2.45</td>
</tr>
</tbody>
</table>
STABL6H
by
Purdue University
--Slope Stability Analysis--
Simplified Janbu, Simplified Bishop
or Spencer’s Method of Slices

Run Date: 2004/12/10
Time of Run: 12:07 下午
Run By: John Smith, XYZ Company
Input Data Filename: Eamp-w.dat
Output Filename: Eamp-w.OUT
Plotted Output Filename: Eamp-w.PLT

PROBLEM DESCRIPTION

BOUNDARY COORDINATES
10 Top Boundaries
10 Total Boundaries

<table>
<thead>
<tr>
<th>Boundary No.</th>
<th>X-Left (m)</th>
<th>Y-Left (m)</th>
<th>X-Right (m)</th>
<th>Y-Right (m)</th>
<th>Soil Type</th>
<th>Below Bnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>6.40</td>
<td>3.06</td>
<td>6.90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.06</td>
<td>6.90</td>
<td>6.10</td>
<td>7.40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.10</td>
<td>7.40</td>
<td>9.18</td>
<td>7.90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.18</td>
<td>7.90</td>
<td>11.07</td>
<td>10.20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.07</td>
<td>10.20</td>
<td>12.95</td>
<td>12.60</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12.95</td>
<td>12.60</td>
<td>14.84</td>
<td>14.90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14.84</td>
<td>14.90</td>
<td>16.10</td>
<td>14.90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16.10</td>
<td>14.90</td>
<td>17.40</td>
<td>14.90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>17.40</td>
<td>14.90</td>
<td>18.66</td>
<td>14.90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18.66</td>
<td>14.90</td>
<td>19.93</td>
<td>14.90</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

ISOTROPIC SOIL PARAMETERS
1 Type(s) of Soil

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Total Saturated Cohesion</th>
<th>Friction Pore Pressure</th>
<th>Piez.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kN/m³)</td>
<td>(kN/m²)</td>
<td>(kPa)</td>
</tr>
<tr>
<td>1</td>
<td>18.6</td>
<td>18.6</td>
<td>9.8</td>
</tr>
</tbody>
</table>

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 9.80

Piezometric Surface No. 1 Specified by 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point No.</th>
<th>X-Water (m)</th>
<th>Y-Water (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>6.40</td>
</tr>
<tr>
<td>2</td>
<td>3.10</td>
<td>6.90</td>
</tr>
<tr>
<td>3</td>
<td>6.10</td>
<td>7.40</td>
</tr>
<tr>
<td>4</td>
<td>9.20</td>
<td>7.90</td>
</tr>
<tr>
<td>5</td>
<td>14.84</td>
<td>14.90</td>
</tr>
<tr>
<td>6</td>
<td>19.93</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Searching Routine Will Be Limited To An Area Defined By 4 Boundaries
Of Which The First 0 Boundaries Will Deflect Surfaces Upward

<table>
<thead>
<tr>
<th>Boundary No.</th>
<th>X-Left (m)</th>
<th>Y-Left (m)</th>
<th>X-Right (m)</th>
<th>Y-Right (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>9.20</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>9.20</td>
<td>1.50</td>
<td>14.80</td>
<td>8.50</td>
</tr>
<tr>
<td>3</td>
<td>14.80</td>
<td>8.50</td>
<td>17.40</td>
<td>10.00</td>
</tr>
<tr>
<td>4</td>
<td>17.40</td>
<td>10.00</td>
<td>19.90</td>
<td>10.00</td>
</tr>
</tbody>
</table>

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.
20 Trial Surfaces Have Been Generated.
10 Surfaces Initiate From Each Of 2 Points Equally Spaced
Along The Ground Surface Between X = 9.20 m.
and X = 14.80 m.
Each Surface Terminates Between X = 14.80 m.
and X = 19.90 m.

Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = .00 m.
2.00 m. Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of 45.0
And 45.0 deg.
Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

** Safety Factors Are Calculated By The Modified Bishop Method **
Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.03</td>
<td>10.75</td>
</tr>
<tr>
<td>4</td>
<td>13.44</td>
<td>12.17</td>
</tr>
<tr>
<td>5</td>
<td>14.85</td>
<td>13.59</td>
</tr>
<tr>
<td>6</td>
<td>16.15</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = ***** \); \(Y = 1360.5 \) and Radius, 1911.9

*** 1.568 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.03</td>
<td>10.76</td>
</tr>
<tr>
<td>4</td>
<td>13.43</td>
<td>12.18</td>
</tr>
<tr>
<td>5</td>
<td>14.84</td>
<td>13.60</td>
</tr>
<tr>
<td>6</td>
<td>16.11</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = 571.2 \); \(Y = 589.8 \) and Radius, 821.8

*** 1.582 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.02</td>
<td>10.76</td>
</tr>
<tr>
<td>4</td>
<td>13.42</td>
<td>12.19</td>
</tr>
<tr>
<td>5</td>
<td>14.81</td>
<td>13.63</td>
</tr>
<tr>
<td>6</td>
<td>16.03</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -259.2 \); \(Y = 277.7 \) and Radius, 380.6

*** 1.616 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.02</td>
<td>10.77</td>
</tr>
<tr>
<td>4</td>
<td>13.40</td>
<td>12.21</td>
</tr>
<tr>
<td>5</td>
<td>14.77</td>
<td>13.66</td>
</tr>
<tr>
<td>6</td>
<td>15.92</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -135.1 \); \(Y = 153.7 \) and Radius, 205.1

*** 1.672 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>12.00</td>
<td>10.78</td>
</tr>
<tr>
<td>4</td>
<td>13.35</td>
<td>12.26</td>
</tr>
<tr>
<td>5</td>
<td>14.67</td>
<td>13.76</td>
</tr>
<tr>
<td>6</td>
<td>15.64</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -57.0 \); \(Y = 75.5 \) and Radius, 94.6

*** 1.854 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.34</td>
<td>12.27</td>
</tr>
<tr>
<td>5</td>
<td>14.64</td>
<td>13.78</td>
</tr>
<tr>
<td>6</td>
<td>15.56</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At \(X = -47.6 \); \(Y = 66.1 \) and Radius, 81.3

*** 1.923 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
</tbody>
</table>
Circle Center At $X = -47.5$; $Y = 66.0$ and Radius, 81.1

*** 1.924 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.99</td>
<td>10.79</td>
</tr>
<tr>
<td>4</td>
<td>13.33</td>
<td>12.28</td>
</tr>
<tr>
<td>5</td>
<td>14.62</td>
<td>13.80</td>
</tr>
<tr>
<td>6</td>
<td>15.50</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At $X = -42.3$; $Y = 60.8$ and Radius, 73.8

*** 1.977 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.97</td>
<td>10.81</td>
</tr>
<tr>
<td>4</td>
<td>13.28</td>
<td>12.32</td>
</tr>
<tr>
<td>5</td>
<td>14.52</td>
<td>13.89</td>
</tr>
<tr>
<td>6</td>
<td>15.26</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At $X = -27.3$; $Y = 45.8$ and Radius, 52.6

*** 2.272 ***

Failure Surface Specified By 6 Coordinate Points

<table>
<thead>
<tr>
<th>Point</th>
<th>X-Surf</th>
<th>Y-Surf</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.92</td>
</tr>
<tr>
<td>2</td>
<td>10.61</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>11.95</td>
<td>10.83</td>
</tr>
<tr>
<td>4</td>
<td>13.21</td>
<td>12.38</td>
</tr>
<tr>
<td>5</td>
<td>14.39</td>
<td>14.00</td>
</tr>
<tr>
<td>6</td>
<td>14.97</td>
<td>14.90</td>
</tr>
</tbody>
</table>

Circle Center At $X = -17.1$; $Y = 35.6$ and Radius, 38.1

*** 2.878 ***